精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.
(1)详见解析;(2)

试题分析:(1)根据中位线可得,从而可证得∥平面。证四边形为平行四边形可得∥平面,从而可证得平面平面。(2)法一:延长交于点,连结,则平面,易证△与△全等。过的垂线,则与垂足的连线也垂直。由二面角的平面角的定义可得所求二面角。再用余弦定理即可求其余弦值。法二空间向量法。由题意可以为坐标原点建立空间直角坐标系。根据各点的坐标求出个向量的坐标,在根据数量积公式求各面的法向量,在用数量积公式求其两法向量夹角的余弦值。注意两法向量所成的角可能与二面角相等也可能为其补角。
试题解析:(1) 证明: ,2分
平行且等于,即四边形为平行四边形,所以.
6分
(2) 『解法1』:
延长交于点,连结,则平面,易证△与△全等,过,连,则,由二面角定义可知,平面角为所求角或其补角.
易求,又,由面积桥求得,所以
所以所求角为,所以
因此平面与平面所成锐二面角的余弦值为
『解法2』:
为原点,方向为轴,以平面内过点且垂直于方向为轴 以方向为轴,建立如图所示空间直角坐标系.

,8分
所以
可求得平面的法向量为

可求得平面的法向量为

因此平面与平面所成锐二面角的余弦值为 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面,底面是直角梯形,,且的中点.

(1)设与平面所成的角为,二面角的大小为,求证:
(2)在线段上是否存在一点(与两点不重合),使得∥平面? 若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt中, D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(1)求证:平面平面
(2)若,求与平面所成角的余弦值;
(3)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使=0成立的点M的个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知=(1,5,-2),=(3,1,z),若,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为(  )
A.,-,4B.,-,4
C.,-2,4D.4,,-15

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(4,-2,-4),b=(6,-3,2),则(a+b)·(a-b)的值为______.

查看答案和解析>>

同步练习册答案