分析 根据函数奇偶性的对称性求出当x>0时的解析式,利用基本不等式的性质求出函数f(x)的最值即可得到结论.
解答 解:若x>0,则-x<0,
∵当x<0时,$f(x)=9x+\frac{a^2}{x}+7$,
∴当-x<0时,f(-x)=-9x-$\frac{{a}^{2}}{x}$+7,
∵y=f(x)是定义在R上的奇函数,
∴f(-x)=-9x-$\frac{{a}^{2}}{x}$+7=-f(x),
即f(x)=9x+$\frac{{a}^{2}}{x}$-7,x>0,
当x=0时,f(0)=0,满足f(x)≥0,
则当x>0时,f(x)=9x+$\frac{{a}^{2}}{x}$-7≥2$\sqrt{9x•\frac{{a}^{2}}{x}}$-7=6|a|-7,x>0,
若f(x)≥0对一切x≥0成立,
则6|a|-7≥0,
即|a|≥$\frac{7}{6}$,
解得a≥$\frac{7}{6}$或a≤-$\frac{7}{6}$,
故答案为:{a|a≥$\frac{7}{6}$或a≤-$\frac{7}{6}$}
点评 本题主要考查函数恒成立问题,根据函数的奇偶性求出函数的解析式,以及利用基本不等式求出最小值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -20 | B. | 20 | C. | -10 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com