精英家教网 > 高中数学 > 题目详情

【题目】某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取

【答案】8,30,10
【解析】解:因总轿车数为9600辆,而抽取48辆进行检验,抽样比例为 =
而三种型号的轿车有显著区别,根据分层抽样分为三层按 比例,
∵“远景”型号的轿车产量是1600辆,应抽取 ×1600=8辆,
同样,得分别从这三种型号的轿车依次应抽取8辆、30辆、10辆.
所以答案是:8,30,10.
【考点精析】掌握分层抽样是解答本题的根本,需要知道先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P是抛物线y2=4x上的一个动点,则点P到直线l1:3x﹣4y+12=0和l2:x+2=0的距离之和的最小值是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )

A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是相等函数的为( )
A.
B.f(x)=(x﹣1)2 , g(x)=x﹣1
C.f(x)=x2+x+1,g(t)=t2+t+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.
(1)求数列{bn}的通项bn
(2)设数列{an}的通项an=loga(1+ ),a>0,且a≠1,记Sn是数列{an}的前n项的和.试比较Sn logabn+1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.

(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的定义域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判断并证明f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并加以说明;
(3)求f( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(3﹣ax).
(1)当 时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[2,3]上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案