【题目】某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取 .
科目:高中数学 来源: 题型:
【题目】已知P是抛物线y2=4x上的一个动点,则点P到直线l1:3x﹣4y+12=0和l2:x+2=0的距离之和的最小值是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )
A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.
(1)求数列{bn}的通项bn;
(2)设数列{an}的通项an=loga(1+ ),a>0,且a≠1,记Sn是数列{an}的前n项的和.试比较Sn与 logabn+1的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并加以说明;
(3)求f( )的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(3﹣ax).
(1)当 时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[2,3]上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com