分析 (1)将被开方数利用完全平方公式变形成完全平方式,利用二次根式化简,即可求得答案;
(2)将原式转成$\sqrt{16-2\sqrt{60}}$,$\sqrt{16-2\sqrt{60}}$转化成完全平方式,化简即可求得答案.
(3)将原式化简$\sqrt{\frac{6-2\sqrt{5}}{2}}$+$\sqrt{\frac{4+2\sqrt{3}}{2}}$,转成完全平方式,化简即可求得答案.
解答 解:(1)$\sqrt{5-2\sqrt{6}}$=$\sqrt{(\sqrt{3})^{2}-2×\sqrt{3}×\sqrt{2}+(\sqrt{2})^{2}}$=$\sqrt{(\sqrt{3}-\sqrt{2})^{2}}$=$\sqrt{3}$-$\sqrt{2}$,
$\sqrt{12+2\sqrt{35}}$=$\sqrt{(\sqrt{7})^{2}+2×\sqrt{7}×\sqrt{5}+(\sqrt{5})^{2}}$=$\sqrt{(\sqrt{7}+\sqrt{5})^{2}}$=$\sqrt{7}$+$\sqrt{5}$,
(2)①原式$\sqrt{9+6\sqrt{2}}$=$\sqrt{9+2\sqrt{18}}$=$\sqrt{(\sqrt{6})^{2}+2×\sqrt{6}×\sqrt{3}+(\sqrt{3})^{2}}$=$\sqrt{(\sqrt{6}+\sqrt{3})^{2}}$=$\sqrt{6}$+$\sqrt{3}$,
②原式$\sqrt{16-4\sqrt{15}}$=$\sqrt{16-2\sqrt{60}}$=$\sqrt{(\sqrt{10})^{2}-2×\sqrt{10}×\sqrt{6}+(\sqrt{6})^{2}}$=$\sqrt{(\sqrt{10}-\sqrt{6})^{2}}$=$\sqrt{10}$-$\sqrt{6}$,
(3)$\sqrt{3-\sqrt{5}}$+$\sqrt{2+\sqrt{3}}$=$\sqrt{\frac{6-2\sqrt{5}}{2}}$+$\sqrt{\frac{4+2\sqrt{3}}{2}}$,
=$\frac{\sqrt{5}-1}{\sqrt{2}}$+$\frac{\sqrt{3}+1}{\sqrt{2}}$,
=$\frac{\sqrt{10}-\sqrt{2}}{2}$+$\frac{\sqrt{6}+\sqrt{2}}{2}$,
=$\frac{\sqrt{10}+\sqrt{6}}{2}$,
故答案为:$\sqrt{3}$-$\sqrt{2}$,$\sqrt{7}$+$\sqrt{5}$.
点评 本题考查二次根式的计算,考查二次根式的化简,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (?p)∧q | B. | p∧q | C. | p∨(?q) | D. | (?p)∧(?q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 96 | B. | 72 | C. | 48 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 32 | C. | 48 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 15 | C. | 14 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com