精英家教网 > 高中数学 > 题目详情

【题目】已知tanα, 是关于x的方程x2﹣kx+k2﹣3=0的两实根,且3π<α< π,求cos(3π+α)﹣sin(π+α)的值.

【答案】解:由已知得:tanα =k2﹣3=1,
∴k=±2,
又∵3π<α< π,
∴tanα>0, >0,
∴tanα+ =k=2>0(k=﹣2舍去),
∴tanα= =1,
∴sinα=cosα=﹣ =﹣
∴cos(3π+α)﹣sin(π+α)=sinα﹣cosα=0
【解析】根据题意,由韦达定理表示出两根之和列出关于k的方程,求出方程的解得到k的值,确定出两根之和,联立求出tanα与 的值,根据α的范围,利用同角三角函数间的基本关系求出sinα与cosα的值,所求式子利用诱导公式化简后将各自的值代入计算即可求出值.
【考点精析】解答此题的关键在于理解同角三角函数基本关系的运用的相关知识,掌握同角三角函数的基本关系:;(3) 倒数关系:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲:

为了评价两种模型的拟合效果,完成以下任务:

(1)(ⅰ)完成下表(计算结果精确到0.1):

)分别计算模型甲与模型乙的残差平方和,并通过比较,的大小,判断哪个模型拟合效果更好.

(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是减函数,在上是增函数,函数上有三个零点.

(1)求的值;

(2)若1是其中一个零点,求的取值范围;

(3)若,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数 (其中e为自然对数的底数),

(I)求函数的单调区间;

(II)设,.已知直线是曲线的切线,且函数上是增函数.

(i)求实数的值;

(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:
1)f(x)在[m,n]上是单调的;
2)当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)= (a>0)存在“和谐区间”,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣ +a,x∈[1,6],a∈R.
(1)若a=1,试判断并证明函数f(x)的单调性;
(2)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a1=2,an+1= ,bn=| |,n∈N* , 则数列{bn}的通项公式bn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0)(m,0),则m的最大值为(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步练习册答案