精英家教网 > 高中数学 > 题目详情

【题目】已知是等差数列, 是等比数列,且 .

1)数列的通项公式;

2)设,求数列项和.

【答案】(1);(2).

【解析】试题分析:1设等差数列的公差为等比数列的公比为 运用等差数列和等比数列的通项公式,列出关于公差与公比的方程组解方程可得公差和公比的值从而可得数列的通项公式;(2由(1)知, .因此利用分组求和法,结合等比数列的求和公式与等差数列的求和公式化简整理即可得到数列项和.

试题解析(1)设等差数列的公差为,等比数列的公比为

 因为,所以解得

又因为,所以

所以

21知,

因此

数列项和为

数列的前项和为

所以,数列的前项和为

【方法点晴】本题主要考查等差数列的通项公式及等比数列的通项、等差等比数列的求和公式和利用分组求和法求数列前项和,属于中档题. 利用分组求和法求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:

甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

15

10

10

5

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

5

10

10

20

5

1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;

2)若将频率视为概率,回答下列两个问题:

①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;

②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2axxln x,且f(x)≥0.

(1)a

(2)证明:f(x)存在唯一的极大值点x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AMCDAB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接ABAC.

(1)在AB边上是否存在点P,使AD∥平面MPC?

(2)当点PAB边的中点时,求点B到平面MPC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点与短轴两个端点的连线互相垂直.

1)求椭圆的标准方程;

2)设点为椭圆的上一点,过原点且垂直于的直线与直线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ABC60°为正三角形,且侧面PAB底面ABCD. EM分别为线段ABPD的中点.

(I)求证:PE⊥平面ABCD

II求证:PB//平面ACM

(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的圆心坐标为,半径为2.以极点为原点,极轴为的正半轴,取相同的长度单位建立平面直角坐标系,直线的参数方程为为参数).

(1)求圆的极坐标方程;

(2)设与圆的交点为 轴的交点为,求.

查看答案和解析>>

同步练习册答案