精英家教网 > 高中数学 > 题目详情

若命题“p或q”是真命题,“p且q”是假命题,则


  1. A.
    命题p和命题q都是假命题
  2. B.
    命题p和命题q都是真命题
  3. C.
    命题p和命题“非q”的真值不同
  4. D.
    命题p和命题q的真值不同
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;
命题q:只有一个实数x满足不等式x2+2ax+2a≤0;
若命题“p或q”是真命题,而命题“p且q”是假命题,且?q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对于区间[-1,1]上任意实数x,不等式-x2-ax+2≥0成立;命题q:方程sinx•cosx=a+1有解.若命题“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程
3
sinx•cosx+cos2x-a-
1
2
=0在R上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是真命题,P且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的方程x2+ax+1=0无实根;命题q:函数f(x)=lg(ax2+(a-2)x+
9
8
)的定义域为R,若命题“p或q”是真命题,“p且q”是假命题,求实数a的取值范围
(-2,
1
2
]∪[2,8)
(-2,
1
2
]∪[2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,2],2x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”,若命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案