精英家教网 > 高中数学 > 题目详情
6.计算:($\frac{4}{9}$)${\;}^{\frac{3}{2}}$+(-$\frac{27}{64}$)${\;}^{-\frac{2}{3}}$-6×(5$\frac{1}{16}$)${\;}^{-\frac{3}{4}}$.

分析 根据有理指数幂的运算性质,原式=$[(\frac{2}{3})^2]^{\frac{3}{2}}$+$[(-\frac{3}{4})^3]^{-\frac{2}{3}}$-6×$[(\frac{3}{2})^4]^{-\frac{3}{4}}$,再化简即可.

解答 解:有理指数幂的运算性质,化简如下:
原式=$[(\frac{2}{3})^2]^{\frac{3}{2}}$+$[(-\frac{3}{4})^3]^{-\frac{2}{3}}$-6×$[(\frac{3}{2})^4]^{-\frac{3}{4}}$
=$(\frac{2}{3})^3$+$(-\frac{3}{4})^{-2}$-6×$(\frac{3}{2})^{-3}$
=$\frac{8}{27}$+$\frac{16}{9}$-6×$\frac{8}{27}$
=$\frac{8+48-48}{27}$
=$\frac{8}{27}$,
即原式的值为$\frac{8}{27}$.

点评 本题主要考查了有理指数幂的运算性质,(abc=abc,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,已知一个圆锥的底面半径为R,高为H.一个圆柱的下底面在圆锥的底面上,且圆柱的上底面为圆锥的截面,设圆柱的高为x.求:
(1)试用x表示圆柱的侧面积;
(2)x为何值时,圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.平面上到定点A(1.1)和到定直线l:x+2y=3的距离相等的点的轨迹为(  )
A.直线B.抛物线C.双曲线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线的方程为x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=cos2($\frac{π}{4}$+x)-sin2($\frac{π}{4}$+x),则f($\frac{π}{12}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),则sinα-cosα为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将y=cos($\frac{1}{2}$x+φ)的图象向左平移$\frac{π}{8}$后函数图象关于y轴对称,则φ可能为-$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=$\sum_{i=1}^5{[m\sqrt{\frac{k+1}{i+1}}]}$,其中,[a]表示不大于a的最大整数,求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设若a≠b,a>0,b>0,且alg(ax)=blg(bx),则(ab)lg(abx)=1.

查看答案和解析>>

同步练习册答案