分析 根据有理指数幂的运算性质,原式=$[(\frac{2}{3})^2]^{\frac{3}{2}}$+$[(-\frac{3}{4})^3]^{-\frac{2}{3}}$-6×$[(\frac{3}{2})^4]^{-\frac{3}{4}}$,再化简即可.
解答 解:有理指数幂的运算性质,化简如下:
原式=$[(\frac{2}{3})^2]^{\frac{3}{2}}$+$[(-\frac{3}{4})^3]^{-\frac{2}{3}}$-6×$[(\frac{3}{2})^4]^{-\frac{3}{4}}$
=$(\frac{2}{3})^3$+$(-\frac{3}{4})^{-2}$-6×$(\frac{3}{2})^{-3}$
=$\frac{8}{27}$+$\frac{16}{9}$-6×$\frac{8}{27}$
=$\frac{8+48-48}{27}$
=$\frac{8}{27}$,
即原式的值为$\frac{8}{27}$.
点评 本题主要考查了有理指数幂的运算性质,(ab)c=abc,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com