精英家教网 > 高中数学 > 题目详情

【题目】直线axby=1与圆x2y2=1相交于AB两点(其中ab是实数),且AOB是直角三角形(O是坐标原点),则点P(ab)与点(0,1)之间距离的最小值为________.

【答案】-1

【解析】根据题意画出图形,如图所示,

过点OOCABC,因为AOB为等腰直角三角形,所以C为弦AB的中点,又|OA|=|OB|=1,根据勾股定理得|AB|=|OC|=|AB|=.

圆心到直线的距离为,即2a2b2=2,即a2=-b2+1≥0.

b.则点P(ab)与点(0,1)之间距离d.

f(b)=b2-2b+2=(b-2)2,此函数为对称轴为x=2的开口向上的抛物线,当-b<2时,函数为减函数.

f()=3-2d的最小值为-1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB2BC1EDC的中点,F为线段EC上一动点.现将AFD沿AF折起,使平面ABD平面ABC.在平面ABD内过点DDKABK为垂足.设AKt,则t的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的方程只有一个实数解,求实数的取值范围;

(2)若当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=x2aln x-1,函数F(x)=.

(1)如果函数f (x)的图象上的每一点处的切线斜率都是正数,求实数a的取值范围;

(2)当a=2时,你认为函数y的图象与yF(x)的图象有多少个公共点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).

1)把利润表示为年产量的函数;

2)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P, 正好形成一个正四棱柱形状的包装盒,若要包装盒容积V(cm3)最大, EF长为____ cm .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面为矩形,已知 ,过底面对角线作与平行的平面交.

(1)试判定点的位置,并加以证明;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,且的中点.

(1)求证:

(2)求平面与平面所成的二面角的正弦值;

(3)在棱上是否存在一点,使得直线与平面所成的角是. 若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案