【题目】已知是坐标系的原点,是抛物线的焦点,过点的直线交抛物线于,两点,弦的中点为,的重心为.
(1)求动点的轨迹方程;
(2)设(1)中的轨迹与轴的交点为,当直线与轴相交时,令交点为,求四边形的面积最小时直线的方程.
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)点为椭圆上一动点,连接、,设的角平分线交椭圆的长轴于点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC的中点.将△ABD沿BD折起,使AB⊥AC,连接AE,AC,DE,得到三棱锥A-BCD.
(1)求证:平面ABD⊥平面BCD
(2)若AD=1,二面角C-AB-D的余弦值为,求二面角B-AD-E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程是:(是参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)若直线与曲线相交于两点,且,试求实数值;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线的参数方程是(是参数),设点.
(Ⅰ)将曲线的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(Ⅱ)设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(为参数),直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,过极点的射线与曲线相交于不同于极点的点,且点的极坐标为,其中.
(1)求的值;
(2)若射线与直线相交于点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com