精英家教网 > 高中数学 > 题目详情

椭圆C的方程数学公式,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率数学公式,直线l过点M(b,0),且数学公式,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量数学公式=λ(数学公式+数学公式)(λ>0),若点P在椭C上,λ的取值范围.

解:(Ⅰ)∵,∴a=2b,c=

,B(0,-b).
,∴-,b2=4,a2=16.
∴椭圆C的方程为.(5分)
(Ⅱ)由
得(b2+a2)x2-2a2cx+a2(c2-b2)=0,


∵点P在椭圆C上,将点P坐标代入椭圆方程中得
∵b2+c2=a2,0<e<1,

.(12分)
分析:(Ⅰ)由,知a=2b,c=.由,知,B(0,-b).再由能推导出椭圆C的方程.
(Ⅱ)由,得(b2+a2)x2-2a2cx+a2(c2-b2)=0,由韦达定理知.再由点P在椭圆C上,知,由此能导出λ的取值范围.
点评:本题考查椭圆方程的求法和求实数λ的取值范围.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,F为椭圆的右焦点,M,N两点在椭圆C上,且
MF
FN
(λ>0)
,定点A(-4,0).
(1)若λ=1时,有
AM
AN
=
106
3
,求椭圆C的方程;
(2)在条件(1)所确定的椭圆C下,当动直线MN斜率为k,且设s=1+3k2时,试求
AM
AN
tan∠MAN
关于S的函数表达式f(s)的最大值,以及此时M,N两点所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
3
2
),F1,F2分别为椭圆C的左右焦点,且离心率e=
1
2

(1)求椭圆C的方程.
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左焦点为F1(-1,0),右焦点为F2(1,0),短轴两个端点为A、B.与x轴不垂直的直线l与椭圆C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1k2=
3
2

(1)求椭圆C的方程;
(2)求证直线l与y轴相交于定点,并求出定点坐标.
(3)当弦MN的中点P落在△MF1F2内(包括边界)时,求直线l的斜率的取值.

查看答案和解析>>

同步练习册答案