精英家教网 > 高中数学 > 题目详情

【题目】函数 .

)讨论的单调性;

)当时,若 ,求实数的取值范围.

【答案】见解析Ⅱ)

【解析】试题分析:(1)求出导函数分四种情况讨论: ,分别令求得 的范围,可得函数增区间, 求得 的范围,可得函数的减区间;(2)对讨论两种情况: 时,由(1)知, 上单调递增,当时, ,可得,符合题意; 时, 上单调递减,当时, ,可证明,不合题意,从而可得实数的取值范围是.

试题解析:(1)由,故的定义域为

因为,所以

①当时, 恒成立,

内无解,故上单调递增;

②当时,因为恒成立,所以单调递增;

③当 时, 恒成立, ,在单调递增;

④当时,由,得

,得

上单调递减,在上单调递增,

综上,当时, 上单调递增,

时, 上单调递减, 上单调递增.

(2)①当时,由(1)知, 上单调递增,

所以当时, ,即

两式相减得

②当时, 上单调递减,

所以当时,

,两式相减得

综上可知,当时,若,则实数的取值范围是

【方法点晴】本题主要考查的是利用导数研究函数的单调性、不等式的恒成立和分类讨论思想的应用,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得 的范围就是递减区间;④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点.

1求二面角的正弦值;

2平面的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a11,公差d0.a2a5a14分别是等比数列{bn}b2b3b4.

(1)求数列{an}{bn}的通项公式;

(2)设数列{cn}对任意自然数n均有成立,求c1c2c2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,f(x1)为奇函数,f(0)0,当x(01]时,f(x)log2x,则在区间(89)内满足方程f(x)2的实数x(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,a2=2,数列{anan+1}是公比为q (q>0)的等比数列,则数列{an}的前2n项和S2n____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AP⊥平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证:AP∥平面BEF

(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

人数(单位:人)

第一组

[20,25)

2

第二组

[25,30)

a

第三组

[30,35)

5

第四组

[35,40)

4

第五组

[40,45)

3

第六组

[45,50]

2

 

()a的值并画出频率分布直方图;

()在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,AB=1,AC=2,BCDE分别是AC1BB1的中点,则直线DE与平面BB1C1C所成角的正弦值为________

查看答案和解析>>

同步练习册答案