精英家教网 > 高中数学 > 题目详情
16.如图,圆锥的轴截面SAB是正三角形,O为底面中心,M为线段SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P的轨迹为(  )
A.线段B.C.椭圆D.抛物线

分析 设圆锥的轴截面SAB是边长为2的等边三角形,建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P的轨迹方程,得到P的轨迹是底面圆的弦.

解答 解:设圆锥的轴截面SAB是边长为2的等边三角形,建立空间直角坐标系.设A(0,-1,0),B(0,1,0),S(0,0,$\sqrt{3}$),M(0,0,$\frac{\sqrt{3}}{2}$),P(x,y,0).
于是有$\overrightarrow{AM}$=(0,1,$\frac{\sqrt{3}}{2}$),$\overrightarrow{MP}$=(x,y,-$\frac{\sqrt{3}}{2}$).
由于AM⊥MP,所以(0,1,$\frac{\sqrt{3}}{2}$)•(x,y,-$\frac{\sqrt{3}}{2}$)=0,
即y=$\frac{3}{4}$,此为P点形成的轨迹是底面圆的弦.
故选:A.

点评 本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某工厂生产甲、乙两种产品,每种产品都分为正品与次品.其中生产甲产品为正品的概率是$\frac{4}{5}$,生产乙产品为正品的概率是$\frac{3}{4}$;生产甲乙两种产品相互独立,互不影响.生产一件甲产品,若是正品可盈利40元,若是次品则亏损5元;生产一件乙产品,若是正品可盈利50元,若是次品则亏损10元.计算以下问题:
(Ⅰ)记X为生产1件甲产品和1件乙产品所得的总利润,求随机变量X的分布列和数学期望;
(Ⅱ)求生产4件产品甲所获得的利润不少于110元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,已知点P(1,-2),直线$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,直线l和曲线C的交点为A、B.
(1)求直线l和曲线C的普通方程;
(2)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2=4,直线l:ax+y+2a=0,当直线l与圆C相交于A,B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高位xcm的内接圆柱,当圆柱的侧面积最大时,x=3cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=(1+ai)(1-i)为纯虚数,i是虚数单位,则实数a的值是-1,|$\overline{z}+i$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.角α的终边经过点(2,-1),则sinα+cosα的值为(  )
A.-$\frac{{3\sqrt{5}}}{5}$B.$\frac{{3\sqrt{5}}}{5}$C.-$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)当m=2时,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案