精英家教网 > 高中数学 > 题目详情
(2009•成都模拟)设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N,若△MNF1为正三角形,则该双曲线的离心率为(  )
分析:根据题中所给条件可知M,N关于x轴对称,|NF2| =
b2
a
,|F1F2|=2c,根据△MNF1为正三角形,|NF1|2 =
b4
a2
+4c2=|MN|2=
4b4
a2
,由此可以求出该双曲线的离心率.
解答:解:由题意可知,M,N关于x轴对称,
|NF2| =
b2
a

∵|F1F2|=2c,
|NF1|2 =
b4
a2
+4c2=|MN|2=
4b4
a2

b4
a2
+4c2=
4b4
a2

4c2=
3b4
a2

∴4a2c2=3b4
∴4a2c2═3(a2-c22
∴3e4-10e2+3=0,
解得e=
3
e=
3
3

∵e>1
e=
3

故选C.
点评:本题以双曲线为载体,考查双曲线的离心率,关键是找出几何量之间的关系,解题时要注意双曲线的离心率要大于1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•成都模拟)在等比数列{an}中,若a2=4,a5=32,则公比应为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)已知圆的方程为x2+y2-6x-8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)已知条件甲:函数f(x)=ax(a>0,a≠1)在其定义域内是减函数,条件乙:loga
1
2
>0
,则条件甲是条件乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)设函数f(x)=
x2+bx+c
2
其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.

查看答案和解析>>

同步练习册答案