精英家教网 > 高中数学 > 题目详情

【题目】如图,是导数y=f′x)的图象,则函数y=fx)的图象是(  )

A.

B.

C.

D.

【答案】D

【解析】的图象可知, 可得函数是减函数 可得函数是增函数 可得函数是减函数;由导函数图象可知, 时, 说明时,函数的切线斜率趋向于零,由此可以判断函数的图象为故选D.

【方法点晴】本题通过对多个图象的选择考查函数的图象与其导函数的图象,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 C:离心率,短轴长为

(1)求椭圆的标准方程;

(2)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个程序框图,则输出的n的值是 (

A.29
B.31
C.61
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的.

(1)a,b的值;

(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出一个用循环语句编写的程序:

k=1

sum=0

WHILE k<10

 sum=sum+k2

 k=k+1

WEND

PRINT sum

END

(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;

(2)请用另一种循环语句的形式把该程序写出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)的周期为4,且x∈(0,2)时f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上恰有5个零点,则实数b应满足的条件是(
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈(1,+∞), >1;命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,则下列命题为真命题的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知斜三棱柱ABC﹣A1B1C1中,底面ABC是等边三角形,侧面BB1C1C是菱形,∠B1BC=60°.

(1)求证:BC⊥AB1
(2)若AB=2,AB1= ,求二面角C﹣AB1﹣C1(锐角)的余弦值.

查看答案和解析>>

同步练习册答案