精英家教网 > 高中数学 > 题目详情
已知集合M⊆{-1,0,2},且M中含有两个元素,则符合条件的集合M有
 
个.
考点:元素与集合关系的判断
专题:计算题,集合
分析:由题意,M={-1,0},{-1,2},{0,2}.
解答: 解:由题意,M={-1,0},{-1,2},{0,2}共3个.
故答案为:3.
点评:本题考查了集合的子集的列举方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司的男女职工的人数之比为4:1,用分层抽样的方法从该公司的所有职工中抽取一个容量为10的样本.已知女职工中甲、乙都被抽到的概率为
1
28
,则公司的职工总人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
(x≠0)
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)求证:函数f(x)在(0,+∞)为单调增函数;
(Ⅲ)求满足f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出命题“若x2-3x+2≠0,则x≠1且x≠2”的逆命题、否命题、逆否命题,并判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={1,2},N={-1,1,3},则M∩N等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角B-PA-D的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在半径为3的同一个球面上.若两圆锥的高的比为1:2,则两圆锥的体积之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-3|<m的解集是空集,则m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①函数f(x)=2x满足:对任意x1、x2∈R且x1≠x2都有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函数f(x)=log2(x+
1+x2
),g(x)=1+
2
2x-1
不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2;
④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案