【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)已知点.若点的极坐标为,直线经过点且与曲线相交于,两点,求,两点间的距离的值.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.
(1)当a=3时,求A∩B;
(2)若A∪B=R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的极坐标方程和曲线的直角坐标方程;
(2)已知点是曲线上一点,点是曲线上一点,的最小值为,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是的反函数,定义:若对于给定实数,函数与)互成反函数,则称满足“和性质”,若函数与互为反函数,则称满足积性质
(1)判断函数是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数在上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,分别是椭圆C:的左、右焦点,过且斜率不为零的动直线l与椭圆C交于A,B两点.
Ⅰ求的周长;
Ⅱ若存在直线l,使得直线,AB,与直线分别交于P,Q,R三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面ABC,点D,E,F分别为PC,AB,AC的中点.
(Ⅰ)求证:平面DEF;
(Ⅱ)求证:.
阅读下面给出的解答过程及思路分析.
解答:(Ⅰ)证明:在中,因为E,F分别为AB,AC的中点,所以①.
因为平面DEF,平面DEF,所以平面DEF.
(Ⅱ)证明:因为平面ABC,平面ABC,所以②.
因为D,F分别为PC,AC的中点,所以.所以.
思路第(Ⅰ)问是先证③,再证“线面平行”;
第(Ⅱ)问是先证④,再证⑤,最后证“线线垂直”.
以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.
空格 | 选项 | ||
① | A. | B. | C. |
② | A. | B. | C. |
③ | A.线线垂直 | B.线面垂直 | C.线线平行 |
④ | A.线线垂直 | B.线面垂直 | C.线线平行 |
⑤ | A.线面平行 | B.线线平行 | C.线面垂直 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com