精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

【答案】(1)见解析;(2)8.

【解析】

(1)参数方程化为普通方程可得直线的普通方程为;极坐标方程化为直角坐标方程可得曲线的直角坐标方程为

(2)由题意可得直线的参数方程为联立直线的参数方程与抛物线的直角坐标方程,结合参数的几何意义可得

(1)由参数方程可得消去参数可得直线的普通方程为:,即

转化为直角坐标方程可得曲线的直角坐标方程为

(2)的极坐标为∴点的直角坐标为

,直线的倾斜角

∴直线的参数方程为

代入,得

两点对应的参数为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)当a=3时,求A∩B;

(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的极坐标方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,点是曲线上一点,的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的反函数,定义:若对于给定实数,函数)互成反函数,则称满足和性质,若函数互为反函数,则称满足积性质

1)判断函数是否满足“1和性质,并说明理由;

2)求所有满足“2和性质的一次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.

1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);

2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,判断函数的奇偶性,并加以证明

(2)若函数上是增函数,求实数的取值范围;

(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆C的左、右焦点,过且斜率不为零的动直线l与椭圆C交于AB两点.

的周长;

若存在直线l,使得直线AB与直线分别交于PQR三个不同的点,且满足PQRx轴的距离依次成等比数列,求该直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面ABC,点DEF分别为PCABAC的中点.

(Ⅰ)求证:平面DEF

(Ⅱ)求证:

阅读下面给出的解答过程及思路分析.

解答:(Ⅰ)证明:在中,因为EF分别为ABAC的中点,所以

因为平面DEF平面DEF,所以平面DEF

(Ⅱ)证明:因为平面ABC平面ABC,所以

因为DF分别为PCAC的中点,所以.所以

思路第(Ⅰ)问是先证,再证线面平行

第(Ⅱ)问是先证,再证,最后证线线垂直

以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.

空格

选项

A

B

C

A

B

C

A.线线垂直

B.线面垂直

C.线线平行

A.线线垂直

B.线面垂直

C.线线平行

A.线面平行

B.线线平行

C.线面垂直

查看答案和解析>>

同步练习册答案