(本小题12分)
如图,四棱锥中,底面为平行四边形 底面
(I)证明:
(II)设,求棱锥的高.
(Ⅰ )见解析;(Ⅱ)的高为。
【解析】本试题主要是考查了立体几何中线线的垂直和棱锥的高的综合运用。
(1)根据余弦定理先求解BD,然后利用线线垂直得到BD垂直于AD,然后利用PD垂直于底面ABCD,可得BD垂直于PD
(2)过D作DE⊥PB于E,由(I)知BC⊥BD,又PD⊥底面ABCD,所以BC⊥平面PBD,而DE平面PBD,故DE⊥BC,所以DE⊥平面PBC,进而得到棱锥的高。
解:(Ⅰ )因为, 由余弦定理得
从而BD2+AD2= AB2,故BDAD
又PD底面ABCD,可得BDPD
所以BD平面PAD. 故PABD
(Ⅱ)过D作DE⊥PB于E,由(I)知BC⊥BD,又PD⊥底面,所以BC⊥平面PBD,而DE平面PBD,故DE⊥BC,所以DE⊥平面PBC
由题设知PD=1,则BD=,PB=2,
由DE﹒PB=PD﹒BD得DE=,即棱锥的高为
科目:高中数学 来源:浏阳一中、田中高三年级2009年下期期末联考试题 数学试题 题型:解答题
(本小题12分)
如图,曲线是以原点为中心,以、为焦点的椭圆的一部分,曲线 是以为顶点,以为焦点的抛物线的一部分,是曲线和的交点,且为钝角,若,.
(I)求曲线和所在的椭圆和抛物线的方程;
(II)过作一条与轴不垂直的直线,分别与曲线、依次交于、、、四点(如图),若为的中点,为的中点,问是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011年新疆农七七师高级中学高二下学期第一学段考试理科数学 题型:解答题
(本小题12分)
如图,<<<…<)是曲线C:上的n个点,点在x轴的正半轴上,且⊿是正三角形(是坐标原点)。
(1)写出
(2)求出点的横坐标关于n的表达式并用数学归纳法证明
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省协作体高三第三次联考文科数学试卷(解析版) 题型:解答题
(本小题12分)如图,直三棱柱中, ,为中点,若规定主视方向为垂直于平面的方向,则可求得三棱柱左视图的面积为;
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源:2011年四川省高2013届春期重点班第一学月考试数学试题 题型:解答题
(本小题12分)如图,B、A是某海面上位于东西方向相距海里的两个观测点。现位于B点正北方向、A点北偏东方向的C点有一艘轮船发出求救信号,位于B点北偏西、A点北偏西的D点的救援船立即前往营救,其航行速度为海里/小时.问该救援船到达C点需要多少时间?
查看答案和解析>>
科目:高中数学 来源:2011-2012年福建省四地六校高二第二次月考文科数学 题型:解答题
(本小题12分)
如图4:求的算法的
程序框图。⑴标号①处填 。标号②处填 。⑵根据框图用直到型(UNTIL)语句编写程序。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com