精英家教网 > 高中数学 > 题目详情

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点,

1)证明:平面

2)若侧面与底面垂直,求五面体的体积

【答案】1)见解析;(245

【解析】

1)取的中点,连接,证明四边形是平行四边形,利用线面平行的判定定理即可证明;

2)取的中点的中点,连接,将该五面体分成三棱柱和四棱锥的体积和,即可得出该五面体的体积.

1)证明:取的中点,连接

如图所示,因为,且

又侧面是正方形,

所以,且

所以四边形是平行四边形,所以

因为平面平面,所以平面

2)取的中点的中点,连接.则几何体为三棱柱;

因为侧面与底面垂直,且,所以底面

由题意知,

所以三棱柱的体积为

因为的中点,

所以

又侧面与底面垂直,所以平面,所以平面

,则四棱锥的体积为

即五面体的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定数列,若满足),对于任意的,都有,则称数列为“指数型数列”.

1)已知数列的通项公式为,试判断数列是不是“指数型数列”;

2)已知数列满足,证明数列为等比数列,并判断数列是否为“指数型数列”,若是给出证明,若不是说明理由;

3)若数列是“指数型数列”,且,证明数列中任意三项都不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体育活动.该中学共有高一学生300名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积极性及选择参加的文体活动情况进行统计,得到数据如下:

(1)在选择参加体育活动的学生中按性别分层抽取6名,再从这6名学生中抽取2人了解家庭情况,求2人中至少有1名女生的概率;

(2)是否有99.9%的把握认为学生的学习积极性与选择参加文化活动有关?请说明你的理由.

附:参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的导函数是奇函数(),则称函数是“双奇函数” .函数

(1)若函数是“双奇函数”,求实数的值;

(2)假设

(i)在(1)的条件下,讨论函数的单调性;

(ii)若,讨论函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,平面的中点.

(1)求证:平面平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线,过抛物线上一点作两条直线与分别相切于两点,分别交抛物线于两点.

(1)当的角平分线垂直轴时,求直线的斜率;

(2)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,焦距为,直线与椭圆相交于两点,关于直线的对称点在椭圆上.斜率为的直线与线段相交于点,与椭圆相交于两点.

(1)求椭圆的标准方程

(2)求四边形面积的取值范围.

查看答案和解析>>

同步练习册答案