精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是空间中不共面的三个向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{c}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$α\overrightarrow{a}$+$β\overrightarrow{b}$+$γ\overrightarrow{c}$,则α+β+γ等于1.

分析 用$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$表示出$\overrightarrow{d}$,根据空间向量的基本定理列出方程组得出α,β,γ的值.

解答 解:$\overrightarrow{d}$=$α\overrightarrow{a}$+$β\overrightarrow{b}$+$γ\overrightarrow{c}$=α($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$)+β($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$)+γ($\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$)=(α+β+γ)$\overrightarrow{{e}_{1}}$+(α+β+2γ)$\overrightarrow{{e}_{2}}$+(α-β+3γ)$\overrightarrow{{e}_{3}}$.
又∵$\overrightarrow{d}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$,∴$\left\{\begin{array}{l}{α+β+γ=1}\\{α+β+2γ=2}\\{α-β+3γ=3}\end{array}\right.$,解得α=0,β=0,γ=1.∴α+β+γ=1.
故答案为:1.

点评 本题考查了空间向量的基本定理,根据基本定理列出方程组是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1-i}$)2014=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m,n,p表示不重合的三条直线,α,β,γ表示不重合的三个平面.下列说法正确的是①③.(写出所有正确命题的序号).
①若m⊥p,m∥n,则n⊥p;
②若m∥β,n∥β,m?α,n?α,则α∥β;
③若α⊥γ,β⊥γ,α∩β=m,则m⊥γ;
④若α∥β,m?α,n?β,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.己知a、b∈R且a>b,则下列不等关系正确的是(  )
A.a2>b2B.|a|<|b|C.$\frac{a}{b}$>1D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设n∈N*,且sinα+cosα=-1.,求证:sinnα+cosnα=(-1)n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若圆锥的主视图是一个边长为2的等边三角形,则该圆锥的体积为$\frac{\sqrt{3}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|kx-1|+|kx-2k|,g(x)=x+1.
(1)当k=1时,求不等式f(x)>g(x)的解集;
(2)若存在x0∈R,使得不等式f(x0)≤2成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+3|-|x+a|是R上的奇函数.
(1)求实数a的值; 
(2)画出函数f(x)的图象;  
(3)写出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a,b,c分别是角A、B、C的对边,且a2+c2-b2+ac=0.
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面积.

查看答案和解析>>

同步练习册答案