精英家教网 > 高中数学 > 题目详情
已知正三棱锥的底面边长为4,高为3,在正三棱锥内任取一点,使得的概率是(  )
A.B.C.D.
A

试题分析:本题利用几何概型解决.根据题中条件:”得点P所在的区域为棱锥的中截面以下,结合大棱锥与小棱锥的体积比即可求得结果。

由题意知,当点P在三棱锥的中截面以下时,满足,故使得的概率为P=,故选A
点评:本题主要考查了几何概型划,以及空间想象能力,属于基础题.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型,解本题的关键是理解体积比是相似比的平方
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的所有棱长都为2,中点,平面

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中, 两两垂直, 且.设是底面内一点,定义,其中分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的直三棱柱中,,点的中点.

(1)求证:∥平面
(2)求异面直线所成的角的余弦值;
(3)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为              

查看答案和解析>>

同步练习册答案