在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E为CD的中点,将△BCE沿BE折起,使得CO⊥DE,其中垂足O在线段DE内.
(1)求证:CO⊥平面ABED;
(2)问∠CEO(记为θ)多大时,三棱锥C-AOE的体积最大,最大值为多少.
(1)见解析(2),
【解析】(1)在直角梯形ABCD中,
CD=2AB,E为CD的中点,则AB=DE,
又AB∥DE,AD⊥AB,可知BE⊥CD.
在四棱锥C-ABED中,BE⊥DE,BE⊥CE,CE∩DE=E,CE,DE?平面CDE,
则BE⊥平面CDE.又BE?平面ABED,
所以平面ABED⊥平面CDE,
因为CO?平面CDE,
又CO⊥DE,且DE是平面ABED和平面CDE的相交直线,
故CO⊥平面ABED.
(2)由(1)知CO⊥平面ABED,
所以三棱锥C-AOE的体积V=S△AOE×OC=××OE×AD×OC.
由直角梯形ABCD中,CD=2AB=4,AD=,CE=2.
得在三棱锥C-AOE中,
OE=CEcos θ=2cos θ,OC=CEsin θ=2sin θ,
V=sin 2θ≤,
当且仅当sin 2θ=1,θ∈,即θ=时取等号(此时OE=<DE,O落在线段DE内),
故当θ=时,三棱锥C-AOE的体积最大,最大值为.
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-7-3练习卷(解析版) 题型:选择题
对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为 ( ).
A.0.09 B.0.20 C.0.25 D.0.45
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-2练习卷(解析版) 题型:填空题
已知抛物线y2=8x的准线过双曲线=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-3练习卷(解析版) 题型:解答题
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.
(1)求证:B1E⊥AD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角A-B1E-A1的大小为30°,求AB的长.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-3练习卷(解析版) 题型:选择题
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是( ).
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-2练习卷(解析版) 题型:选择题
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是( ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-1练习卷(解析版) 题型:解答题
如图所示是一几何体的直观图、正(主)视图、侧(左)视图、俯视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求几何体BEC-APD的体积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-4-2练习卷(解析版) 题型:选择题
已知数列{an}满足an+1=+,且a1=,则该数列的前2 013项的和等于( ).
A. B.3019 C.1508 D. 013
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-2-3练习卷(解析版) 题型:选择题
已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( ).
A.(-∞,0) B.(0,) C.(0,1) D.(0,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com