精英家教网 > 高中数学 > 题目详情

已知函数,当时,函数取得极大值.

(1)求实数的值;

(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有

(3)已知正数,满足,求证:当时,对任意大于,且互不相等的实数,都有.

 

【答案】

(1)-1;(2)(3)见解析.

【解析】本试题主要是考查了导数在研究函数中的运用。并和不等式进行综合的试题。有难度。

解:(1)

 

(3)用数学归纳法证明.

①当n=2时,,且,,

由(Ⅱ)得,即

当n=2时,结论成立.            …………………………9分

②假设当n=k时结论成立,即当时,

. 当n=k+1时,设正数,令

, 则,且.

           …………………………13分

当n=k+1时,结论也成立.

综上由①②,对任意,结论恒成立. …………………………14分

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届安徽省高三上学期第一次月考文科数学试卷(解析版) 题型:解答题

已知函数().

(1)当时,求函数的单调区间;

(2)当时,取得极值,求函数上的最小值;

 

查看答案和解析>>

科目:高中数学 来源:2014届辽宁丹东市高二4月月考(一)理科数学试卷(解析版) 题型:解答题

已知函数,函数

①当时,求函数的表达式;

②若,函数上的最小值是2 ,求的值;

③在②的条件下,求直线与函数的图象所围成图形的面积.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省高三4月月考数学文理合卷试卷(解析版) 题型:解答题

理科(本小题14分)已知函数,当时,函数取得极大值.

(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省高三下学期5月月考理科数学试卷(解析版) 题型:解答题

已知函数

(I)当时,讨论函数的单调性:

(Ⅱ)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.

试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高三第六次月考理科数学试卷(解析版) 题型:解答题

已知函数,函数

⑴当时,求函数的表达式;

⑵若,函数上的最小值是2 ,求的值;

⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.

 

查看答案和解析>>

同步练习册答案