精英家教网 > 高中数学 > 题目详情
已知椭圆的上顶点为,左焦点为,直线与圆相切.过点的直线与椭圆交于两点.
(I)求椭圆的方程;
(II)当的面积达到最大时,求直线的方程.
(1)(2)

试题分析:解:(I)将圆的一般方程化为标准方程,则圆的圆心,半径.由得直线的方程为.
由直线与圆相切,得,
所以(舍去).
时,,
故椭圆的方程为.  5分
(II)由题意可知,直线的斜率存在,设直线的斜率为,
则直线的方程为.
因为点在椭圆中
所以对任意,直线都与椭圆C交于不同的两点

设点P,Q的坐标分别为,则


又因为点A到直线的距离
所以的面积为   10分
,则

因为,
所以当时,的面积达到最大,
此时,即.
故当的面积达到最大时,直线的方程为. 12分
点评:本试题主要是考查了直线与椭圆的位置关系的综合运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的离心率为(    )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知与抛物线交于A、B两点,
(1)若|AB|="10," 求实数的值。
(2)若, 求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线焦点的直线与抛物线交于两点,,且中点的纵坐标为,则的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

m是常数,若是双曲线的一个焦点,则m的值为(    )
A.16B.34C.16或34D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两定点,,动点满足,由点轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足为原点),求四边形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

同步练习册答案