精英家教网 > 高中数学 > 题目详情
已知椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)的上、下焦点分别为F1,F2,在x轴上的两个端点分别为A,B.且四边形F1AF2B是边长为1的正方形.
(1)求椭圆C的离心率及其标准方程;
(2)若直线l与y轴交于点P(0,m),与椭圆C交于相异的两点MN,且
MP
=3
PN
,求实数m的取值范围.
分析:(1)由已知中四边形F1AF2B是边长为1的正方形,可求出b,c值,进而求出a值,代入离心率公式和椭圆的标准方程可得答案.
(2)若直线l与y轴交于点P(0,m),与椭圆C交于相异的两点MN,联立直线与椭圆方程后,可得方程有两相异的根,利用韦达定理结合
MP
=3
PN
构造关于m的不等式,解不等式可得实数m的取值范围.
解答:解:(1)∵F1,F2分别为椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)的上、下焦点
A,B为椭圆在x轴上的两个端点,且四边形F1AF2B是边长为1的正方形
可得b=c=
2
2
,进而a=1
故椭圆C的离心率e=
c
a
=
2
2
,其标准方程为y2+
x2
1
2
=1

(2)∵直线l与y轴交于点P(0,m),
设直线l的斜率为k,则直线l的方程为y=kx+m
设M(x1,y1),N(x2,y2
y=kx+m
y2+
x2
1
2
=1
得:(k2+2)x2+2kmx+(m2-1)=0
则△=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0(*)
且x1+x2=
-2km
k2+2
,x1x2=
m2-1
k2+2

MP
=3
PN

∴-x1=3x2,则x1+x2=-2x2,x1x2=-3x22
则3(x1+x22+4x1x2=0
即3(
-2km
k2+2
2+4•
m2-1
k2+2
=0
整理得:4k2m2-k2+2m2-2=0
当m2
1
4
时,k2=
2-2m2
4m2-1

MP
=3
PN

∴k≠0
∴k2=
2-2m2
4m2-1
>0
解得-1<m<-
1
2
,或
1
2
<m<1
经验证此时(*)式成立
故实数m的取值范围为(-1,-
1
2
)∪(
1
2
,1)
点评:本题考查的知识点是直线与圆锥曲线的综合问题椭圆的简单性质,是高考的压轴大题,运算量较大,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)的离心率为
6
3
,过右顶点A 的直线l与椭圆C相交于A、B两点,且B(-1,-3).
(1)求椭圆C和直线l的方程;
(2)若圆D:x2-2mx+y2+4y+m2-4=0与直线lAB相切,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a
>b>0)的离心率为
2
2
,且椭圆上一点到两个焦点的距离之和为2
2
.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围.
(3)试用m表示△MPQ的面积S,并求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)的离心率e=
3
2
,短轴长为2.
(1)求椭圆C的方程;
(2)设A(x1,y1),B(x2,y2)为椭圆C上的不同两点,已知向量
m
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
,且
m
n
=0.已知O为坐标原点,试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案