【题目】已知二项式( ﹣ )n展开式中的各项系数的绝对值之和为128.
(1)求展开式中系数最大的项;
(2)求展开式中所有的有理项.
【答案】
(1)解:二项式( ﹣ )n展开式中的各项系数的绝对值之和为128,
即为各项二项式系数之和为128,即2n=128得n=7,
则二项式( ﹣ )7展开式的通项为(﹣1)rC7r ,
∵C73=C74=35,
∴当r=4时,展开式中系数最大,
∴展开式中系数最大的项为35x﹣3,
(2)解:当 为整数时,即r=7,4,1
∴展开式中所有的有理项(﹣1)7C77x﹣7=﹣x﹣7,或35x﹣3,﹣7x
【解析】(1)二项式( ﹣ )n展开式中的各项系数的绝对值之和为128,即为各项二项式系数之和为128,即2n=128,解得即可,当r=4时,展开式中系数最大(2)考虑通项公式中,x的指数为3的倍数的情况,即可得到个数
科目:高中数学 来源: 题型:
【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 与p,且乙投球2次均未命中的概率为 .
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:已知在全部人中随机抽取人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率。下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4 cosθ.
(1)求C1与C2交点的直角坐标;
(2)已知曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计60吨厨余垃圾,假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分别为x,y,z,其中x>0,x+y+z=60,则数据x,y,z的标准差的最大值为 . (注:方差 ,其中 为x1 , x2 , …,xn的平均数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某产品的历史收益率的频率分布直方图如图所示.
(1)试估计该产品收益率的中位数;
(2)若该产品的售价(元)与销量(万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组与的对应数据:
售价(元) | 25 | 30 | 38 | 45 | 52 |
销量(万份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根据表中数据算出关于的线性回归方程为,求的值;
(3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,则不等式f( )>0的解集为( )
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0, )
D.(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+3在x=2时取得最小值,且函数f(x)的图象在x轴上截得的线段长为2.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣mx的一个零点在区间(0,2)上,另一个零点在区间(2,3)上,求实数m的取值范围.
(3)当x∈[t,t+1]时,函数f(x)的最小值为﹣ ,求实数t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com