精英家教网 > 高中数学 > 题目详情

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①数学公式;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是________.


分析:根据题意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0可得2f(x)=2f(x)f(0),进而分析可得f(0)=1,依次分析4个命题,对于①、令x=y=,可得f(t)+f(0)=2f(2,易得f(2,故①错误,对于②、令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),分析可得f(y)+f(-y)=0不恒成立,f(x)不是奇函数,故②错误,对于③、令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,可得f(x+t)=-f(x-t),进而可得f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),可以判断③正确,对于④、根据题意,无法判断f(x)的单调性,则④错误;综合可得答案.
解答:根据题意,在f(x+y)+f(x-y)=2f(x)f(y)中,
令y=0可得,2f(x)=2f(x)f(0),又由f(x)不是常函数,即f(x)=0不恒成立,则f(0)=1,
依次分析4个命题可得:
对于①、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=y=,可得f(t)+f(0)=2f(2
结合f(0)=1,f(t)=0,可得f(2=,则可得f(2,故①错误,
对于②、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),f(y)+f(-y)=0不恒成立,f(x)不是奇函数,故②错误,
对于③、在f(x+y)+f(x-y)=2f(x)f(y)中,令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,
即f(x+t)=-f(x-t),则f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),则f(x)是周期函数且一个周期为4t,③正确,
对于④、根据题意,无法判断f(x)的单调性,则④错误;
故答案为③.
点评:本题考查抽象函数的应用,关键是根据题意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0,求出f(0)的值,注意f(x)不是常函数,应该把f(0)=0舍去.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案