精英家教网 > 高中数学 > 题目详情

函数

(1)若的定义域为,求实数的取值范围.

(2)若的定义域为[-2,1],求实数a的值.

解析:(1)①若

1)当a=1时,,定义域为R,适合;

2)当a=-1时,,定义域不为R,不合;          

②若为二次函数,

定义域为R,恒成立,

综合①、②得a的取值范围                            

(2)命题等价于不等式的解集为[-2,1],

显然

是方程的两根,

,解得a的值为a=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=
1-x
ax
+lnx
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln
a+b
b
1
a+b
.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-2sin2(x-
θ
2
)+sin(2x-θ),θ∈(0,
π
2
)
是定义在R 上的奇函数.
(1)求θ的值和函数f(x)的单调递减区间;
(2)若三角形ABC三个内角A、B、C的对应边分别为a、b、c,△ABC的面积等于函数f(A)的最大值,求f(A)取最大值时a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•金山区一模)定义:对函数y=f(x),对给定的正整数k,若在其定义域内存在实数x0,使得f(x0+k)=f(x0)+f(k),则称函数f(x)为“k性质函数”.
(1)若函数f(x)=2x为“1性质函数”,求x0
(2)判断函数f(x)=
1
x
是否为“k性质函数”?说明理由;
(3)若函数f(x)=lg
a
x2+1
为“2性质函数”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案