精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,BA=BC=2,,异面直线A1B与AC成60°角,点O、E分别是棱AC和BB1的中点,点F是棱B1C1上的动点.
(1)证明:A1E⊥OF.
(2)求点E到面AB1C的距离.
(3)求二面角B1-A1C-C1的大小.

【答案】分析:(1)以B为坐标原点,以BA,BC,BB1所在直线分别为x、y、z轴建立空间直角坐标系,写出要用的点的坐标,设出棱锥的高,根据异面直线A1B与AC成60°的角,写出两条异面直线的夹角,求出高,再求出异面直线所成的角.
(2)求出平面AB1C的法向量为 和向量的坐标,代入点E到面AB1C的距离公式d=,即可求出点E到面AB1C的距离.
(3)根据建立的坐标系,看出平面的一个法向量,设出另一个平面的法向量,根据法向量与平面上的向量数量积等于0,求出一个法向量,根据两个向量的夹角做出二面角的值.
解答:解:(1)如图1,以B为坐标原点,以BA,BC,BB1所在直线分别为x、y、z轴建立空间直角坐标系,则A(2,0,0),C(0,2,0),0(1,1,0)
设棱锥的高为h,则A1(2,0,h),C(0,2,0),
∴cos<
即cos60°=,解得h=2.
∴E(0,0,1),A1(202),
∵F为棱B1C1上的动点,故可设f(0,y,2).



(2)易求出平面AB1C的法向量为 =(1,1,1),=(2,0,-1)
∴点E到面AB1C的距离d==
(3)易知平面A1CC1的一个法向量为 =(1,1,0),
设平面A1B1C的一个法向量为 =(x,y,1),则
=(x,y,1)•(-2,2,-2)=-2x+2y-2=0,…①
=(x,y,1)•(-2,0,0)=-2x=0.…②
由①、②,得
∴cos<>=
∴<>=60°.
即二面角B1-A1C-C1的大小为60°.
点评:本题考查利用空间向量解决几何体中的夹角和距离的问题,本题解题的关键是建立合适的坐标系,把逻辑性很强的理论推导转化成数字的运算,降低了题目的难度
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案