精英家教网 > 高中数学 > 题目详情

【题目】求下列不等式的解集:

1

2

3

4

5

6

【答案】(1);(2);(3);(4);(5);(6)

【解析】

1)根据一元二次不等式的解法,求得不等式的解集.

2)根据一元二次不等式的解法,求得不等式的解集.

3)根据一元二次不等式的解法,求得不等式的解集.

4)根据一元二次不等式的解法,求得不等式的解集.

5)根据一元二次不等式的解法,求得不等式的解集.

6)根据一元二次不等式的解法,求得不等式的解集.

1)∵,∴原不等式可化为,即

两边开平方得,从而可知.即

∴不等式的解集为

2)一元二次不等式,对应的一元二次方程的两个根为,所以原不等式的解集为:

3)由于所以原不等的解集为

4)依题意,所以原不等式的解集为

5)不等式,即,对应一元二次方程的两个根为,所以原不等式的解集为

6)由于,所以原不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆C过定点F20),且与直线x=-2相切,圆心C的轨迹为E

1)求圆心C的轨迹E的方程;

2)若直线lEPQ两点,且线段PQ的中心点坐标(11),求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)视分布在各区间内的频率为相应的概率,求

Ⅱ)将表示为的函数,求出该函数表达式;

Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如则取的概率等于市场需求量落入的频率),的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, 的中点,以为折痕将向上折起, 变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未来创造业对零件的精度要求越来越高.打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有发展空间.某制造企业向高校打印实验团队租用一台打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取个零件,度量其内径的茎叶图如图(单位:).

(1)计算平均值与标准差

(2)假设这台打印设备打印出品的零件内径服从正态分布,该团队到工厂安装调试后,试打了个零件,度量其内径分别为(单位:):,试问此打印设备是否需要进一步调试?为什么?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数在区间上是减函数,且满足.令,则的大小关系为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个顶点到平面的距离分别是3,3,6,则其重心到平面的距离为__________.(写出所有可能值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是( )

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

同步练习册答案