分析 令t=sinx+cosx=$\sqrt{2}$sinx(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],可得sinxcosx=$\frac{{t}^{2}-1}{2}$,换元由二次函数区间的最值可得.
解答 解:化简可得y=(1+sinx)(1+cosx)
=1+sinx+cosx+sinxcosx,
令t=sinx+cosx=$\sqrt{2}$sinx(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∴平方可得t2=1+2sinxcosx,即sinxcosx=$\frac{{t}^{2}-1}{2}$,
换元可得y=1+t+$\frac{{t}^{2}-1}{2}$=$\frac{1}{2}$(t+1)2,t∈[-$\sqrt{2}$,$\sqrt{2}$],
由二次函数知识可得当t=-1时,函数取最小值0;
当t=$\sqrt{2}$时,函数取最大值$\frac{3+2\sqrt{2}}{2}$
∴原函数的值域为[0,$\frac{3+2\sqrt{2}}{2}$]
点评 本题考查三角函数的值域,涉及换元法和二次函数区间的值域,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | λ>0 | B. | λ<0 | C. | λ=0 | D. | λ不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com