精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x-sinx
(Ⅰ)若x∈[0,π],试求函数f(x)的值域;
(Ⅱ)若x∈[0,π],θ∈[0,π],求证:数学公式
(Ⅲ)若x∈[kπ,(k+1)π],θ∈(kπ,(k+1)π),k∈z,猜想数学公式; 的大小关系.(不必证明)

解:(Ⅰ)当x∈[0,π]时,f′(x)=1-cosx>0,
∴f(x)为增函数
∴f(x)的值域为[0,π]
(Ⅱ)设

由导数等于0得,x=θ
∴x∈(0,θ),g′(x)<0,x∈(θ,π),g′(x)>0
∴x∈[0,π]时,g(x)≥g(θ)=0

(Ⅲ)在题设条件下,同(Ⅱ)当k为偶数时
当k为奇数时
分析:(Ⅰ)当x∈[0,π]时,求导函数f′(x)=1-cosx>0,从而f(x)为增函数,故可求f(x)的值域;
(Ⅱ)构造函数,利用导数等于0得,x=θ,从而可知x∈[0,π]时,g(x)≥g(θ)=0,故得证;
(Ⅲ)在题设条件下,同(Ⅱ)当k为偶数时;当k为奇数时
点评:本题以函数为载体,考查函数的单调性,考查构造函数证明不等式,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案