精英家教网 > 高中数学 > 题目详情
(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )
分析:求得双曲线的焦点坐标,利用△F1PF2的面积为2,确定P的坐标,利用向量的数量积公式,即可求得结论.
解答:解:双曲线
x2
3
-y2=1
的两个焦点坐标为F1(-2,0),F2(2,0)
设P的坐标为(x,y),则
∵△F1PF2的面积为2
1
2
×4×|y|=2

∴|y|=1,代入双曲线方程解得|x|=
6

PF1
PF2
=(-2-x,-y)•(2-x,-y)=x2-4+y2=3
故选B.
点评:本题考查双曲线的几何性质,考查向量的数量积运算,确定P的坐标是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+
3
(k>0)
,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=
3
,AD=DE=2
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)己知集合M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对所有m∈R,均有M∩N≠∅,则b的取值范同是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )

查看答案和解析>>

同步练习册答案