精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中),且曲线在点处的切线垂直于直线.

(1)求的值及此时的切线方程;

(2)求函数的单调区间与极值.

【答案】(Ⅰ)a= ,; (Ⅱ)减区间为,增区间为;极小值为,无极大值..

【解析】

(Ⅰ)先求导函数,根据切线与直线垂直可得切线的斜率为k=-2.由导函数的意义代入即可求得a的值;代入函数后可求得,进而利用点斜式可求得切线方程。

(Ⅱ)将a代入导函数中,令,结合定义域求得x的值;列出表格,根据表格即可判断单调区间和极值。

(Ⅰ)由于,所以

由于 在点 处的切线垂直于直线

,解得.

此时

切点为,所以切线方程为.

(Ⅱ)由(Ⅰ)知,则,

,解得(舍),

的变化情况如下表,

5

0

递减

极小值

递增

所以函数的减区间为,增区间为.

函数的极小值为,无极大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若对于分别为某个三角形的边长,则称为“三角形函数”.给出下列四个函数:

;②;③;④.其中为“三角形函数”的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是网格工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行,数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推,若数字195在第m行从左至右算第n个数字,则_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C: .

(1)若直线y轴上的截距为0且不与x轴重合,与圆C交于,试求直线:x轴上的截距;

(2)若斜率为1的直线与圆C交于D,E两点,求使面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将命题“一组对边平行且相等的四边形是平行四边形”改写成“若,则”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.

(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;

(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?

(3)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?

甲流水线

乙流水线

合计

合格品

不合格品

合计

附:,其中.

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数有(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案