7£®Ä³ÉúÎïÑо¿ÕßÓÚÔªµ©ÔÚºþÖзÅÈëһЩ·ïÑÛÁ«£¬ÕâЩ·ïÑÛÁ«ÔÚºþÖеÄÂûÑÓËÙ¶ÈÔ½À´Ô½¿ì£¬¶þÔµײâµÃ·ïÑÛÁ«¸²¸ÇÃæ»ýΪ24m2£¬ÈýÔµײâµÃ¸²¸ÇÃæ»ýΪ36m2£¬·ïÑÛÁ«¸²¸ÇÃæ»ýy£¨µ¥Î»£ºm2£©ÓëÔ·Ýx£¨µ¥Î»£ºÔ£©µÄ¹ØϵÓÐÁ½¸öº¯ÊýÄ£ÐÍy=kax£¨k£¾0£¬a£¾1£©Óëy=px${\;}^{\frac{1}{2}}$+q£¨p£¾0£©¿É¹©Ñ¡Ôñ£®
£¨¢ñ£©ÊÔÅжÏÄĸöº¯ÊýÄ£Ð͸üºÏÊÊ£¬²¢Çó³ö¸ÃÄ£Ð͵ĽâÎöʽ£»
£¨¢ò£©Çó·ïÑÛÁ«¸²¸ÇÃæ»ýÊÇÔªµ©·ÅÈëÃæ»ý10±¶ÒÔÉϵÄ×îСÔ·ݣ®
£¨²Î¿¼Êý¾Ý£ºlg2¡Ö0.3010£¬lg3¡Ö0.4771£©

·ÖÎö £¨¢ñ£©ÅжÏÁ½¸öº¯Êýy=kax£¨k£¾0£¬a£¾1£©£¬$y=p{x^{\frac{1}{2}}}+q£¨p£¾0£©$ÔÚ£¨0£¬+¡Þ£©µÄµ¥µ÷ÐÔ£¬ËµÃ÷º¯ÊýÄ£ÐÍy=kax£¨k£¾0£¬a£¾1£©ÊʺÏÒªÇó£®È»ºóÁгö·½³Ì×飬Çó½â¼´¿É£®
£¨¢ò£©ÀûÓàx=0ʱ£¬$y=\frac{32}{3}•{£¨{\frac{3}{2}}£©^0}=\frac{32}{3}$£¬Ôªµ©·ÅÈë·ïÑÛÁ«Ãæ»ýÊÇ$\frac{32}{3}{m^2}$£¬Áгö²»µÈʽת»¯Çó½â¼´¿É£®

½â´ð ±¾Ð¡ÌâÂú·Ö£¨12·Ö£©£®
½â£º£¨¢ñ£©Á½¸öº¯Êýy=kax£¨k£¾0£¬a£¾1£©£¬$y=p{x^{\frac{1}{2}}}+q£¨p£¾0£©$ÔÚ£¨0£¬+¡Þ£©É϶¼ÊÇÔöº¯Êý£¬Ëæ×ÅxµÄÔö¼Ó£¬º¯Êýy=kax£¨k£¾0£¬a£¾1£©µÄÖµÔö¼ÓµÄÔ½À´Ô½¿ì£¬¶øº¯Êý$y=p{x^{\frac{1}{2}}}+q£¨p£¾0£©$µÄÖµÔö¼ÓµÄÔ½À´Ô½Âý£®
ÓÉÓÚ·ïÑÛÁ«ÔÚºþÖеÄÂûÑÓËÙ¶ÈÔ½À´Ô½¿ì£¬ËùÒÔº¯ÊýÄ£ÐÍy=kax£¨k£¾0£¬a£¾1£©ÊʺÏÒªÇó£®
ÓÉÌâÒâ¿ÉÖª£¬x=2ʱ£¬y=24£»x=3ʱ£¬y=36£¬ËùÒÔ$\left\{{\begin{array}{l}{k{a^2}=24}\\{k{a^3}=36}\end{array}}\right.$
½âµÃ$\left\{{\begin{array}{l}{k=\frac{32}{3}}\\{a=\frac{3}{2}}\end{array}}\right.$
ËùÒԸú¯ÊýÄ£Ð͵ĽâÎöʽÊÇ$y=\frac{32}{3}•{£¨{\frac{3}{2}}£©^x}$£¨x¡ÊN*£©£®
£¨¢ò£© x=0ʱ£¬$y=\frac{32}{3}•{£¨{\frac{3}{2}}£©^0}=\frac{32}{3}$£¬
ËùÒÔÔªµ©·ÅÈë·ïÑÛÁ«Ãæ»ýÊÇ$\frac{32}{3}{m^2}$£¬
ÓÉ$\frac{32}{3}•{£¨{\frac{3}{2}}£©^x}£¾10¡Á\frac{32}{3}$µÃ${£¨{\frac{3}{2}}£©^x}£¾10$£¬
ËùÒÔ$x£¾{log_{\frac{3}{2}}}10=\frac{lg10}{{1g\frac{3}{2}}}=\frac{1}{lg3-lg2}$£¬
ÒòΪ$\frac{1}{lg3-lg2}=\frac{1}{0.4770-0.3010}¡Ö5.7$£¬ËùÒÔx¡Ý6£¬
ËùÒÔ·ïÑÛÁ«¸²¸ÇÃæ»ýÊÇÔªµ©·ÅÈë·ïÑÛÁ«Ãæ»ý10±¶ÒÔÉϵÄ×îСÔ·ÝÊÇ6Ô·ݣ®

µãÆÀ ±¾Ð¡Ì⿼²éÊýѧ½¨Ä£ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£»¿¼²éÊýѧӦÓÃÒâʶ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÓÐÒ»¸öÈÝÁ¿Îª200µÄÑù±¾£¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬¸ù¾ÝÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼¹À¼Æ£¬Ñù±¾Êý¾ÝÂäÔÚÇø¼ä[10£¬12]ÄÚµÄƵÊýΪ36£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÅ×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬¹ýµãFÇÒÇãб½ÇΪ150¡ãµÄÖ±ÏßlÓëÅ×ÎïÏßÔÚµÚÒ»¡¢¶þÏóÏÞ·Ö±ð½»ÓÚA£¬BÁ½µã£¬Ôò$\frac{{|{BF}|}}{{|{AF}|}}$µÈÓÚ£¨¡¡¡¡£©
A£®3B£®$7+4\sqrt{3}$C£®$\frac{1}{3}$D£®$3+2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁк¯ÊýÖУ¬ÊÇÆ溯ÊýÇÒÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®y=x-1B£®y=£¨$\frac{1}{2}$£©xC£®y=x3D£®$y={log_{\frac{1}{2}}}x$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}£¨1-x£©+1£¬-1¡Üx£¼k}\\{x|x-1|£¬k¡Üx¡Üa}\end{array}\right.$£¬Èô´æÔÚʵÊýkʹµÃº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬2]£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÓÐÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Õâ¸ö¼¸ºÎÌåÓ¦ÊÇÒ»¸ö£¨¡¡¡¡£©
A£®Àą̂B£®Àâ׶C£®ÀâÖùD£®ÕýËÄÃæÌå

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚËÄÀâ׶A-CDFEÖУ¬µ×ÃæCDFEÊÇÖ±½ÇÌÝÐΣ¬CE¡ÎDF£¬EF¡ÍEC£¬$CE=\frac{1}{2}DF$£¬AF¡ÍƽÃæCDFE£¬PΪADÖе㣮
£¨¢ñ£©Ö¤Ã÷£ºCP¡ÎƽÃæAEF£»
£¨¢ò£©ÉèEF=2£¬AF=3£¬FD=4£¬ÇóµãFµ½Æ½ÃæACDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êý$f£¨x£©=lnx-\frac{2}{x}$µÄÁãµãËùÔڵĴóÖÂÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨e£¬+¡Þ£©B£®$£¨\frac{1}{e}£¬1£©$C£®£¨2£¬3£©D£®£¨e£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ò»Æ¬É­ÁÖÔ­ÓÐÃæ»ýΪa£¬Ïּƻ®Ã¿Äê²É·¥Ò»Ð©Ê÷ľ£¬ÇÒÿÄê²É·¥µÄÉ­ÁÖÃæ»ýÕ¼ÉÏÒ»Äêµ×É­ÁÖÃæ»ýµÄ°Ù·Ö±ÈΪq£¬¼´µÚx£¨x¡ÊN£©Äêµ×µÄÊ£ÓàÉ­ÁÖÃæ»ýΪy=a£¨1-q£©x£¬xÓëyµÄ²¿·Ö¶ÔÓ¦ÖµÈç±í£º
 x 0 1 2
 y a $\frac{20}{3}$ $\frac{40}{9}$
£¨1£©ÇóÔ­ÓÐÉ­ÁÖÃæ»ýaºÍÿÄê²É·¥É­ÁÖÃæ»ýµÄ°Ù·Ö±Èq£»
£¨2£©Îʾ­¹ý¶àÉÙÄêºó£¬Ê£ÓàµÄÉ­ÁÖÃæ»ý¿ªÊ¼Ð¡ÓÚÔ­À´µÄ$\frac{1}{10}$£®
£¨×¢£ºlg2¡Ö0.301£¬lg3¡Ö0.477£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸