精英家教网 > 高中数学 > 题目详情
17.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,则这个塔顶有(  )盏灯.
A.1B.2C.3D.7

分析 由题意知第七层至第一层的灯的盏数构成一个以a1为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得

解答 解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数
构成一个以a1为首项,以2为公比的等比数列,
∴由等比数列的求和公式可得$\frac{{a}_{1}(1-{2}^{7})}{1-2}$=381,解得a1=3,
∴顶层有3盏灯,
故选:C.

点评 本题考查等比数列的求和公式,由题意构造等比数列是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow{b}$=($\sqrt{3}$,-1),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的周期及单调减区间.
(2)已知x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=asinx,g(x)=lnx,其中a∈R,y=g-1(x)是y=g(x)的反函数.
(1)若0<a≤1,证明:函数G(x)=f(1-x)+g(x)在区间(0,1)上是增函数;
(2)证明:$\sum_{i=1}^{n}$sin$\frac{1}{(1+k)^{2}}$<ln2;
(3)设F(x)=g-1(x)-mx2-2(x+1)+b,若对任意的x>0,m<0有F(x)>0恒成立,求满足条件的最小整数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$A=\left\{{x|0≤x<1}\right\},B=\left\{{x|\frac{1}{x}≥1}\right\}$,则A∪B=(  )
A.RB.[0,+∞)C.[0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|x+2|+|6-x|≥k恒成立
(1)求实数k的最大值;
(2)若实数k的最大值为n,正数a,b满足$\frac{8}{5a+b}+\frac{2}{2a+3b}=n$,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函数y=f(x)的极小值为4,且在点x=$\frac{1}{3}$处取到极大值,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要不充分条件,则实数a的取值范围是(  )
A.(-∞,0)∪($\frac{1}{2}$,+∞)B.(-∞,0]∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在正项等比数列{an}中,若a4+a3-2a2-2a1=6,则a5+a6的最小值为48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为(  )
A.3B.5C.$\frac{{5\sqrt{21}}}{7}$D.$3\sqrt{5}$

查看答案和解析>>

同步练习册答案