精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1,过点M(1,1)的直线与椭圆相交于A、B两点,若M为弦AB的中点,求直线AB的方程.

分析 由于A,B两点是直线与椭圆的交点,故它们应满足椭圆方程,设出它们的坐标,然后根据它们的中点为M,可将坐标间的关系转化为求直线AB的斜率,然后再由点斜式求出直线方程.

解答 解:设A(x1,y1)、B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{4}$+$\frac{{{y}_{1}}^{2}}{8}$=1,①,
$\frac{{{x}_{2}}^{2}}{4}$+$\frac{{{y}_{2}}^{2}}{8}$=1.②
①-②,得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{8}$=0.
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-2•$\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}}$.
又∵M为AB中点,
∴x1+x2=2,y1+y2=2.
∴直线AB的斜率为-2.
∴直线AB的方程为y-1=-2(x-1),即2x+y-3=0.

点评 本题考查直线和椭圆的位置关系,考查点差法求直线方程的方法,注意运用斜率公式和中点坐标公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知双曲线x2-$\frac{{y}^{2}}{4}$=1的左右焦点分别是F1,F2,过F2的直线交双曲线右支于A、B两点且A在x轴上方,证明:$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(3x-$\frac{π}{3}$).
(1)若函数y=af(x)-b的最大值为4,最小值为2,求a,b的值;
(2)当x∈[0,$\frac{π}{6}$]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{6}$,则$\overrightarrow{a}$$•\overrightarrow{b}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,-$\sqrt{3}$),B(-2,2$\sqrt{3}$).
(1)求方向与AB一致的单位向量;
(2)设向量$\overrightarrow{AC}$与向量$\overrightarrow{AB}$的夹角为60°,且|$\overrightarrow{AC}$|=2,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.抛物线y2=8x的动弦AB的长为16,求弦AB的中点M到y轴的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点(4,-$\sqrt{3}$),且与直线y=-$\frac{\sqrt{3}}{3}$(x-2)垂直的直线斜截式方程为y+$\sqrt{3}$=$\sqrt{3}(x-4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将y=sin(2x-$\frac{π}{3}$)的图象平移φ个单位后图象关于x=$\frac{π}{3}$对称,则|φ|的最小值=$\frac{π}{12}$.

查看答案和解析>>

同步练习册答案