精英家教网 > 高中数学 > 题目详情
已知tan(α+
π
4
)=
1
3
,求证3sin2α=-4cos2α
分析:tan(α+
π
4
)=
1
3
,可得2sinα+cosα=0,要证等式成立,只要证6sinαcosα=-4(cos2α-sin2α),只要证 
 (2sinα+cosα)(sinα-2cosα)=0,而由上可知,(2sinα+cosα)(sinα-2cosα)=0 成立,于是命题得证.
解答:证明:
∵tan(α+
π
4
)=
1
3
,∴
1+tanα
1-tanα
=
1
3
,tanα=-
1
2
,即 2sinα+cosα=0.
要证3sin2α=-4cos2α,只需证6sinαcosα=-4(cos2α-sin2α),
只需证2sin2α-3sinαcosα-2cos2α=0,只需证(2sinα+cosα)(sinα-2cosα)=0,
而2sinα+cosα=0,∴(2sinα+cosα)(sinα-2cosα)=0显然成立,于是命题得证.
点评:本题考查两角和差的正切公式,用分析法证明三角恒等式,关键是寻找使等式成立的充分条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如图:△ABC中,|
AC
|=2|
AB
|
,D在线段BC上,且
DC
=2
BD
,BM是中线,用向量证明AD⊥BM.(平面几何证明不得分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=
1
7
,则tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=2
,则
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+θ)=3
,则sin2θ-2cos2θ+1的值为
1
5
1
5

查看答案和解析>>

同步练习册答案