设函数的图像在处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
(1)递增区间是和,递减区间是;(2)不存在.
【解析】
试题分析:(1)求导,利用极值点的坐标列出方程组,解出,确定函数解析式,再求导,求单调区间;(2)先假设存在“正保值区间”,通过已知条件验证是否符合题意,排除不符合题意得情况.
试题解析:(1), 1分
依题意则有:,即 解得 v 3分
∴.令,
由解得或,v 5分
所以函数的递增区间是和,递减区间是 6分
(2)设函数的“正保值区间”是,因为,
故极值点不在区间上;
①若极值点在区间,此时,在此区间上的最大值是4,不可能等于;故在区间上没有极值点; 8分
②若在上单调递增,即或,
则,即,解得或不符合要求; 10分
③若在上单调减,即1<s<t<3,则,
两式相减并除得:, ①
两式相除可得,即,
整理并除以得:, ②
由①、②可得,即是方程的两根,
即存在,不合要求. 12分
综上可得不存在满足条件的s、t,即函数不存在“正保值区间”。 13分
考点:1.求函数的极值;2.求最值;3.求单调区间.
科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考文科数学试卷(解析版) 题型:解答题
设函数。
(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;
(Ⅱ)若函数在区间内不单调,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013届湖南省上学期高二期中考试理科数学试卷(解析版) 题型:解答题
设函数的图像与y轴交点为,且曲线在点处的切线方程为,若函数在处取得极值为.(1)求函数解析式;(2)确定函数的单调递增区间;(3)证明:当 (14分)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江西省高三第二次联考数学文卷 题型:解答题
设函数。
(1)若时,函数取得极值,求函数的图像在处的切线方程;
(2)若函数在区间内不单调,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com