精英家教网 > 高中数学 > 题目详情

【题目】已知函数fxa2xkRa0e为自然对数的底数),且曲线fx)在点(1f1))处的切线的斜率为e2a2

1)求实数k的值,并讨论函数fx)的单调性;

2)设函数gx,若对x1∈(0+∞),x2R,使不等式fx2gx1)﹣1成立,求实数a的取值范围.

【答案】1k2,见解析(20a

【解析】

1)求出,由已知求出,求出的范围,即可得出结论;

2)对x1∈(0+∞),x2R,使不等式fx2gx1)﹣1成立,转化为由(1)求出,用导数法求出,即可求解.

1f'1

,故k2a0,所以e2xa2e2xe2lna

x∈(﹣lna)时,0fx)递减;

x∈(lna+∞)时,fx)递增;

单调递减区间是,单调递增区间是

2)根据(1)当xR时,fx)有最小值为

flna

gx

x∈(0+∞),

hx)=x2ex+lnx,显然函数在(0+∞)单调递增,

hh1)>0

hx)在(1)存在唯一的零点m,使得hm)=0

m2em+lnm0,当x∈(0m)时,gx)递减;

x∈(m+∞)时,gx)递增;

gm)为gx)的最小值,

gm)﹣1

对于yhm)都单调递增,

且当时,0成立,

所以gm)﹣10

根据题意,0,即

a,故0a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立

(1)记20件产品中恰有2件不合格品的概率为,的最大值点

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出等和数列的定义:_____________________________________;已知数列是等和数列,且,公和为,那么的值为____________.这个数列的前项和的计算公式为_____________________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,…,123,…,的一个排列,若互不相同,则称数列具有性质.

1)若,且,写出具有性质的所有数列

2)若数列具有性质,证明:

3)当时,分别判断是否存在具有性质的数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx若方程2[fx]25tfx+3t20恰有4个不同的实根,则实数t的取值范围为(参考数据:ln2≈0.6931)(

A.

B.

C.22ln2)∪(1

D.21n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高,据测量,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组.如图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估计高三年级全体男生身高在以上(含)的人数;

(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在以上(含)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点PMN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OCMN所成的角为

(1)用分别表示矩形的面积,并确定的取值范围;

(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EGE1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,为边的中点,以为折痕把折起,使点到达点的位置,且使平面平面.

(1)证明:平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案