精英家教网 > 高中数学 > 题目详情
11.设$\overrightarrow{a}$=($\frac{3}{2}$,sinα),$\overrightarrow{b}$=(cosα,$\frac{1}{3}$),α∈(0,2π),且$\overrightarrow{a}$∥$\overrightarrow{b}$,求角α.

分析 根据向量的平行,得到sin2α=1,再根据α∈(0,2π),得到答案.

解答 解:$\overrightarrow{a}$=($\frac{3}{2}$,sinα),$\overrightarrow{b}$=(cosα,$\frac{1}{3}$),α∈(0,2π),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴$\frac{3}{2}$×$\frac{1}{3}$=sinαcosα,
∴sin2α=1,
∴2α=$\frac{π}{2}$+2kπ,k∈Z,
∴α=$\frac{π}{4}$+kπ,k∈Z,
∵α∈(0,2π),
∴α=$\frac{π}{4}$,或α=$\frac{5π}{4}$.

点评 本题考查了向量的平行的条件和二倍角公式,以及函数函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.函数f(x)=22x-(m-1)2x+2在x∈[0,2]只有一个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-2x+2,当x∈[1,4]时总有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x>0,y>0,且x+2y=1,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2sinxcosx的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知2sin2α+5cos(-α)=4.且α是第一象限角.求下列各式的值;
(1)sin($\frac{π}{2}$+α);
(2)tan(α+π)+$\frac{sin(\frac{3π}{2}-α)}{cos(π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$lo{g}_{2}[-a{x}^{2}+(a+1)x-1]$(a≠1)的定义域为集合A.
(1)若a=-1,求函数f(x)的零点;
(2)根据a的不同取值,求出集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(0,-2$\sqrt{3}}$),$\overrightarrow b$=(1,$\sqrt{3}}$),则$\overrightarrow{a}$在$\overrightarrow b$上的正射影的数量为(  )
A.$\sqrt{3}$B.3C.-$\sqrt{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinωx(ω>0).
(1)当ω=2时,写出由y=f(x)的图象向右平移$\frac{π}{6}$个单位长度得到的图象所对应的函数解析式;
(2)若y=f(x)图象过点$(\frac{2π}{3},0)$,且在区间$(0,\frac{π}{3})$上是增函数,求ω的值.

查看答案和解析>>

同步练习册答案