分析 根据向量的平行,得到sin2α=1,再根据α∈(0,2π),得到答案.
解答 解:$\overrightarrow{a}$=($\frac{3}{2}$,sinα),$\overrightarrow{b}$=(cosα,$\frac{1}{3}$),α∈(0,2π),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴$\frac{3}{2}$×$\frac{1}{3}$=sinαcosα,
∴sin2α=1,
∴2α=$\frac{π}{2}$+2kπ,k∈Z,
∴α=$\frac{π}{4}$+kπ,k∈Z,
∵α∈(0,2π),
∴α=$\frac{π}{4}$,或α=$\frac{5π}{4}$.
点评 本题考查了向量的平行的条件和二倍角公式,以及函数函数值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 3 | C. | -$\sqrt{3}$ | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com