(本题12分)
设,
,其中
.
(1) 若,求
的值;
(2)若,求
的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知令
.
(1)求的表达式;
(2)若函数和函数
的图象关于原点对称,
(ⅰ)求函数的解析式;
(ⅱ)若在区间
上是增函数,求实数l的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数。
(1)若,求a的值;
(2)若a>1,求函数f(x)的单调区间与极值点;
(3)设函数是偶函数,若过点A(1,m)
可作曲线y=f(x)的三条切线,求实数m的范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在实数集上的奇函数
(
、
)过已知点
.
(Ⅰ)求函数的解析式;
(Ⅱ)试证明函数在区间
是增函数;若函数
在区间
(其中
)也是增函数,求
的最小值;
(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;
(Ⅳ)求不等式的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题13分)已知函数。
(Ⅰ)若,试判断并证明
的单调性;
(Ⅱ)若函数在
上单调,且存在
使
成立,求
的取值范围;
(Ⅲ)当时,求函数
的最大值的表达式
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com