精英家教网 > 高中数学 > 题目详情

【题目】设等差数列{an}的前n项和为Sn , 若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn= ,若{bn}的前n项和为Tn , 证明:Tn

【答案】
(1)解:∵{an}等差数列,

由S9=9a5=81,得a5=9.

又由a3+a5=14,得a3=5.

由上可得等差数列{an}的公差d=2.

∴an=a3+(n﹣3)d=2n﹣1.


(2)解:证明:由


【解析】(1)利用等差数列的通项公式性质及其求和公式即可得出.(2)利用裂项求和、数列的单调性即可得出.
【考点精析】利用等差数列的前n项和公式和数列的前n项和对题目进行判断即可得到答案,需要熟知前n项和公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 ,乙每轮猜对的概率是 ;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(1)“星队”至少猜对3个成语的概率;
(2)“星队”两轮得分之和为X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点M(2,1),且离心率为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)设A(0,﹣1),直线l与椭圆C交于P,Q两点,且|AP|=|AQ|,当△OPQ(O为坐标原点)的面积S最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数fx)在区间上为减函数,并且最大值为?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinωx(ω>0)的图象向左平移 个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(﹣ω,ω)内单调递增,则ω的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2= ,且直线l经过曲线C的左焦点F. ( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形.将正方形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M为AF1的中点,如图2.
(I)求证:AC⊥BM;
(Ⅱ)求平面CE1M与平面ABE1F1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;….设第n次“扩展”后所得数列为1,x1 , x2 , …,xm , 2,并记an=log2(1x1x2…xm2),则数列{an}的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

同步练习册答案