(16分)已知函数的导数为. 记函数 k为常数).
(1)若函数f(x)在区间上为减函数,求的取值范围;
(2)求函数f(x)的值域.解析:(1)因为f(x)在区间上为减函数,
所以对任意的且恒有成立.
即恒成立. …………………………3分
因为,所以对且时,恒成立.
又<1,所以 …………………………6分
(2). …………………………7分
下面分两种情况讨论:
(1)当时,是关于x的增函数,值域为
…………………………9分
(2)当时,又分三种情况:
①当时,因为,所以即.
所以f(x)是减函数,.
又,
当,所以f(x)值域为. ………………………10分
②当k=1时,,
且f(x)是减函数,故f(x)值域是. ………………………12分
③当时,是增函数,,
.
下面再分两种情况:
(a)当时,的唯一实根,故,
是关于x的增函数,值域为;
(b)当时,的唯一实根,
当时,;当时,;
所以f(x).
故f(x)的值域为. ………………………15分
综上所述,f(x)的值域为;();
();(). ………………………16分
科目:高中数学 来源:2012年苏教版高中数学选修2-2 1.3导数在研究函数中的应用练习卷(解析版) 题型:选择题
已知函数的导数为0的值也使值为0,则常数的值为( )
A、0 B、±3
C、0或±3 D、非以上答案
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com