【题目】设函数.
(1)当(为自然对数的底数)时,求的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求的取值范围.
【答案】(1)2;(2)当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点;(3).
【解析】
试题(1)当m=e时,>0,由此利用导数性质能求出f(x)的极小值;(2)由,得,令,x>0,m∈R,则h(1)=,
h′(x)=1-x2=(1+x)(1-x),由此利用导数性质能求出函数g(x)=f′(x)-零点的个数;(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值范围
试题解析:(1)由题设,当时,
易得函数的定义域为
当时,,此时在上单调递减;
当时,,此时在上单调递增;
当时,取得极小值
的极小值为2
(2)函数
令,得
设
当时,,此时在上单调递增;
当时,,此时在上单调递减;
所以是的唯一极值点,且是极大值点,因此x=1也是的最大值点,
的最大值为
又,结合y=的图像(如图),可知
①当时,函数无零点;
②当时,函数有且仅有一个零点;
③当时,函数有两个零点;
④时,函数有且只有一个零点;
综上所述,当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点.
(3)对任意恒成立,等价于恒成立
设,在上单调递减
在恒成立
恒成立
(对,仅在时成立),的取值范围是
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.
(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 和抛物线: , 为坐标原点.
(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;
(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率为,点的坐标为,且椭圆上任意一点到点的最大距离为.
(1)求椭圆的标准方程;
(2)若过点的直线与椭圆相交于,两点,点为椭圆长轴上的一点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为坐标原点,椭圆:()过点,其上顶点为,右顶点和右焦点分别为,,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线交椭圆于,两点(异于点),,试判定直线是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知曲线的极坐标方程为,曲线的参数方程为(为参数,),射线,,分别与曲线交于极点外的三点.
(1)求的值;
(2)当时,两点在曲线上,求与的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com