精英家教网 > 高中数学 > 题目详情

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,则f(2009)的值是


  1. A.
    2009
  2. B.
    2010
  3. C.
    2011
  4. D.
    2012
D
分析:根据f(x+2)≥f(x)+2可得f(x+4)≥f(x)+4,而f(x+4)≤f(x)+4可得f(x+4)=f(x)+4,然后根据递推关系可求出所求.
解答:∵f(x+2)≥f(x)+2
∴f(x+4)≥f(x+2)+2≥f(x)+4
而f(x+4)≤f(x)+4
∴f(x+4)=f(x)+4
∴f(2009)=f(2005)+4
=f(2001)+4×2
=…
=f(1)+4×502
而f(1)=4
则f(2009)=4+4×502=2012
故选D.
点评:本题主要考查了抽象函数及其应用,解题的关键是求出f(x+4)=f(x)+4,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(1)=0,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的偶函数,当x≥0时,f(x)=x(1-x),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的函数,对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的奇函数,且当x<0时,f(x)=
1
x+1
,则f(
1
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=-
1x
在R上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则a≤1;
③若log0.7(2m)<log0.7(m-1),则m>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是
 

查看答案和解析>>

同步练习册答案