精英家教网 > 高中数学 > 题目详情
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=sinx是否属于集合M?说明理由;
(2)设函数f(x)=lg
2kx2+1
∈M
,求实数k的取值范围.
(3)若函数f(x)=2x+x2,证明 f(x)∈M.
分析:(1)根据题意,只要sin(x0+1)=sinx0+sin1成立即可,由解析式列出方程,再由特殊角的正弦值进行证明;
(2)把解析式代入f(x+1)=f(x)+f(1),列出对应的方程,再由一元二次方程有解的条件求出k的范围,注意二次系数是否为零;
(3)根据定义只要证明f(x+1)=f(x)+f(1)有解,把解析式代入列出方程,转化为对应的函数,利用函数的零点存在性判定理进行判断.
解答:解:(1)由题意知f(x)=sinx,要f(x0+1)=f(x0)+f(1),即需sin(x0+1)=sinx0+sin1
显然当x0=0时等式成立,即f(x)=sinx∈M.
(2)∵函数f(x)=lg
2k
x2+1
∈M
,∴f(x+1)=f(x)+f(1)有解,即lg
2k
(x+1)2+1
=lg
2k
x2+1
+lg
2k
2
lg
2k
(x+1)2+1
=lg
2k
x2+1
2k
2
2k
(x+1)2+1
=
2k
x2+1
2k
2

∴x2+1=k(x2+2x+2),∴(k-1)x2+2kx+2k-1=0有解,
①k=1时,x=-
1
2
有解,符合;
②k≠1时,△=4k2-4(k-1)(2k-1)≥0,∴
3-
5
2
≤k≤
3+
5
2
,k≠1

综上:
3-
5
2
≤k≤
3+
5
2

(3)∵函数f(x)=2x+x2∈M,要证f(x)∈M,
∴f(x+1)=f(x)+f(1)有解,∴2x+1+(x+1)2=2x+x2+3有解,即2x+2x-2=0有解,
设h(x)=2x+2x-2,∵h(0)=-1,h(1)=2,
根据函数的零点存在性判定理得,存在x0∈(0,1),h(x0)=0,
即f(x0+1)=f(x0)+f(1)成立,∴f(x)∈M.
点评:本题题意新颖,主要利用新定义进行运算,考查了对数函数、正弦函数和指数函数的性质,函数的零点存在性判定理的应用,综合性强、难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M
,求a的取值范围;
(3)设函数y=2x图象与函数y=-x的图象有交点,证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f(x)的全体;
①当x∈[0,+∞)时,函数值为非负实数;
②对于任意的s、t∈x[0,+∞),λ>0,都有
f(x)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

在三个函数f1(x)=x-1,f2(x)=2x-1f3(x)=ln
x+1
中,属于集合M的是
f3(x)
f3(x)
(写出您认为正确的所有函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知集合M是满足下列两个条件的函数f(x)的全体:①f(x)在定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使f(x)在[a,b]上的值域为[
a
2
 , 
b
2
]
.若函数g(x)=
x-1
+m
,g(x)∈M,则实数m的取值范围是
(0 , 
1
2
]
(0 , 
1
2
]

查看答案和解析>>

同步练习册答案