精英家教网 > 高中数学 > 题目详情

袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?

解析试题分析:解 分别记得到红球、黑球、黄球、绿球为事件A、B、C、D.由于A、B、C、D为互斥事件,根据已知得到解得
∴得到黑球、黄球、绿球的概率分别为
考点:互斥事件的概率
点评:主要是考查了互斥事件的概率的公式的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某射手每次射击击中目标的概率均为,且每次射击的结果互不影响
(I)假设这名射手射击3次,求至少2次击中目标的概率
(II)假设这名射手射击3次,每次击中目标10分,未击中目标得0分,在3次射击中,若有两次连续击中目标,而另外一次未击中目标,则额外加5分;若3次全部击中,则额外加10分。用随机变量§表示射手射击3次后的总得分,求§的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:

X
1
2
3
4
Y
51
48
45
42
这里,两株作物“相近”是指它们之间的直线距离不超过1米。

(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(Ⅰ)设第一次训练时取到的新球个数为,求的分布列和数学期望;
(Ⅱ)求第二次训练时恰好取到一个新球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:

请假次数




人数




根据上表信息解答以下问题:
(1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率
(2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为,求的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

山东省某示范性高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座概率如下表:

 
信息技术
生物
化学
物理
数学
周一





周三





周五





 (Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
 (Ⅱ)设周三各辅导讲座满座的科目数为,求随即变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;
(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:

测试指标





元件A





元件B





(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

同步练习册答案