精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点 ,且经过点 ,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方)
(1)求椭圆C的方程;
(2)若|AM|=2|MB|,且直线l与圆 相切于点N,求|MN|的长.

【答案】
(1)解:由题意知:

a2=3+b2>3,解得:a2=4,b2=1,

故椭圆C的方程为


(2)解:设M(m,0),直线l:x=ty+m,A(x1,y1),B(x2,y2),

由|AM|=2|MB|,有y1=﹣2y2

,得(t2+4)y2+2my+m2﹣4=0,

由韦达定理得:

,即

化简得(m2﹣4)(t2+4)=﹣8t2m2,①

原点O到直线的距离

又直线l与圆 相切,

,即 ,②

联立①②得:21m4﹣16m2﹣16=0,即(3m2﹣4)(7m2+4)=0,

解得 ,此时 ,满足△>0,得

在Rt△OMN中,可得

∴|MN|的长为


【解析】(1)由题意列关于a,b的方程组,求解方程组可得a,b的值,则椭圆方程可求;(2)设出M,A,B的坐标及直线l的方程x=ty+m,与椭圆方程联立,化为关于y的一元二次方程,由|AM|=2|MB|,有y1=﹣2y2,再结合根与系数的关系可得m与t的关系,由直线与圆相切可得m与t的另一关系式,联立求得m,t的值,可得M的坐标,则|MN|的长可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:
(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.

月份x

1

2

3

4

利润y(单位:百万元)

4

4

6

6

相关公式: = = = x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)对任意x∈[a,+∞],都有f(x)≤x﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC、BC所在直线的斜率之积等于﹣2,记顶点C的轨迹为曲线E.
(1)求曲线E的方程;
(2)设直线y=2x+m(m∈R且m≠0)与曲线E相交于P、Q两点,点M( ,1),求△MPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加冬季越野跑的600名选手编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,把编号分50组后,在第一组的001到012这12个编号中随机抽得的号码为004.这600名选手分穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服.则抽到穿白色衣服的选手人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知﹣ <x<0,则sinx+cosx=
(I)求sinx﹣cosx的值;
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四数a1 , a2 , a3 , a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)设f(x)=x2﹣x+1,实数a满足|x﹣a|<1,求证:|f(x)﹣f(a)|<2(|a+1|)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案