精英家教网 > 高中数学 > 题目详情

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒, )表示这个开学季内的市场需求量, (单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量的平均数;

(2)将表示为的函数;

(3)根据直方图估计利润不少于4000元的概率.

【答案】(1)153;(2) ;(3)0.7.

【解析】试题分析:(1)根据分布图先算出各频率,然后再计算求出平均数(2)分类讨论当时及当时两种情况,分别写出解析式(3)代入求解结果即可

解析:(1)需求量为的频率

需求量为的频率

需求量为的频率

需求量为的频率

需求量为的频率.

则平均数.

(2)因为每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元,

所以当时,

时, ,所以

(3)因为利润不少于4000元,解得,解得.

所以由(1)知利润不少于4000元的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,若函数内有两个极值点,则实数的取值范围是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月12时的气温状况,随机选取该月中的5天,将这5天中12时的气温数据(单位:)制成如图所示的茎叶图.考虑以下结论:

①甲地的平均气温低于乙地的平均气温;

②甲地的平均气温高于乙地的平均气温;

③甲地气温的标准差小于乙地气温的标准差;

④甲地气温的标准差大于乙地气温的标准差.

其中根据茎叶图能得到的统计结论的标号为( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们常这样说:“如果你的物理成绩好,那么你的数学学习就不会有什么大问题.”某班针对“高中物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系,如表为该班随机抽取6名学生在一次考试中的物理和数学成绩:

学生编号

学科

1

2

3

4

5

6

物理成绩(x

75

65

75

65

60

80

数学成绩(y

125

117

110

103

95

110

(1)求数学成绩y对物理成绩x的线性回归方程;

(2)该班某同学的物理成绩100分,预测他的数学成绩.

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

参考数据:752+652+752+652+602+802=29700,

75×125+65×117+75×110+65×103+60×95+80×110=46425.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经济开发区规划要修建一地下停车场,停车场横截面是如图所示半椭圆形AMB,其中AP为2百米,BP为4百米,M为半椭圆上异于AB的一动点,且面积最大值为平方百米,如图建系.

求出半椭圆弧的方程;

若要将修建地下停车场挖出的土运到指定位置P处,N为运土点,以A,B为出口,要使运土最省工,工程部需要指定一条分界线,请求出分界线所在的曲线方程;

若在半椭圆形停车场的上方修建矩形商场,矩形的一边CDAB平行,设百米,试确定t的值,使商场地面的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出集合

(1)求证:函数

(2)(1)可知,是周期函数且是奇函数,于是张三同学得出两个命题:

命题甲:集合M中的元素都是周期函数;命题乙:集合M中的元素都是奇函数,请对此给出判断,如果正确,请证明;如果不正确,请举出反例;

(3)为常数,的充要条件并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数(个)

加工的时间(小时)

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出关于的线性回归方程.

(3)试预测加工个零件需要多少时间?

附录:参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

查看答案和解析>>

同步练习册答案